

Coupled simulation of Multiphase Fluid Flow & Multiple Body Motion: Oil flow in a rotating spur-gear system

Christine Klier, Matthias Banholzer, Kathleen Stock, Ludwig Berger

Outline

- 1. Motivation
- 2. Methodology
- 3. Problem setup and mesh generation
- 4. Modelling setup
- 5. Results
- 6. Conclusions

1. Motivation

Gear lubrication is a significant concern in a wide range of industries which use power transmission.

Main objective of **CFD model prediction** is the optimization of the oil flow around rotating components in a gearbox:

- Improve the efficiency of transmissions
- Reduce the friction between the gearwheels (pitting)
- Minimization of load-independent spin power losses
- Assessment of wall effects on gear housing

Reduction of the operation costs of a gearbox and prolonging the component lifetime.

2. Methodology

- Multiphase Fluid Flow
 - Volume Of Fluid (VOF) Method: utilizes an Eulerian framework
 - immescible fluid phases share velocity, pressure, and temperature fields
 - air entrapment and turbulence regimes can be well represented

coupled with

- Multiple Body Motion
 - Overlapping Overset (Chimera) Method: Overlapping of multiple grids

 \rightarrow every motion can be simulated

- every moving body is represented with one grid
- one mesh in the background which "contains" all meshes

Oil flow in a rotating spur-gear system

3. Problem setup

Oil flow in a rotating spur-gear system

3.2. Mesh generation

Mesh – detailed view

Polyhedral mesher:

- background region 2 mm, refinement 1 mm, intersection 0.5 mm
- overset regions 1mm

Prism layer mesher:

– 5 prism layers

≈ 5.4 mio cells

Simulation time requirements:

inner iterations 5
processors: 12

20 s per $\Delta t \& 1$ mio. cells

3.2. Mesh – Oil flow in a rotating spur-gear system

Overset mesh – cell status

CFD SCHUCK. Ingenieurgesellschaft mbH

4. Modell setup

- Eulerian Multiphase Model isothermal
 - Volume Of Fluid: Phase 1 (gear lubricant)

 Oil (C12H26)
 density 841.2 kg/m^3
 ISO VG 220, 100°C
 dyn. viscosity 0.0149 Pa-s

 Phase 2
 - Air (ideal Gas)
 - Initial oil distribution by a user field function: z_{NORM} 0.35 / 0.457 / 0.564
- Multiple Body Motion:
- 1. Rotation +/- 2000 rpm
- 2. Ramping of the rotation rate by a user field function
- Turbulence Modell: k-omega SST (Menter)
- Solver Settings :

- − Timestep 1·10⁻⁵ s
- Inner iterations 5

Oil flow in a rotating spur-gear system

CFD SCHUCK_ Ingenieurgesellschaft mbH

5. Results

5.1. Flow fields transient (oil filling height middle)

Velocity flow field (oil filling height middle)

t = ½ r

t = 1 r

CFD SCHUCK

Transient pressure distribution (oil filling height middle)

t = ½ r

5. Results – Oil flow in a rotating spur-gear system

CFD SCHUCK_____

Ingenieurgesellschaft mbH

5.2. Oil distribution in the box and on gear flanks

Volume Fraction (VF) of oil in interstitial gear regions (comparison of different oil filling heights)

high high Volume Fraction 0.40000 Volume Fraction $t = \frac{1}{2} r$ middle low inclusion of air bubbles in interstitial gear regions in all cases Volume Fraction

 $t = \frac{1}{3} r$

CFD SCHUCK.

Ingenieurgesellschaft mbH

VF of oil on gear flanks (comparison of different oil filling heights)

Gear No. 2

5.2. Results – Oil flow in a rotating spur-gear system

17

CFD SCHUCK_ Ingenieurgesellschaft mbH

VF of oil in detail on flanks of gear no.2

	oil filling [%]	avg. pressure in gearbox (1r -2r) [%]	torc (at 2r G1	jue) [%] G2	frict (at 2r G1	:ion [.]) [%] G2	displaced oil volume (at 2r) [%]
low	32	100	100	100	100	100	4.5
middle	46	+ 18	+ 233	+ 141	+ 72	- 13	4.2
high	58	+ 34	+ 455	+ 497	+ 272	+ 59	8.9

CFD SCHUCK 5. Results – Oil flow in a Ingenieurgesellschaft mbH 5.3. VF of oil on gear flanks –

Comparison with ramping the rotation rate

	oil filling	VF on surface (≈ 2r) [%]	torque (≈ 2r) [%]		friction (≈ 2r) [%]		displaced oil volume (≈ 2r) [%]
	[%]	(1st case as reference)	G1	G2	G1	G2	
2000 rpm	46	100	100	100	100	100	4.2
Ramp + 2000 rpm	46	- 4	- 2	- 2	- 6	- 4	4.4

6. Conclusions

- 1) Transient flow fields, pressure, and torques in the gear-box and between adjacent gear teeth could be effectively studied by the presented CFD method.
- 2) The applied method was definitely convenient to study the influence of different oil filling heights:
 - on the oil flow in the gearbox
 - on the volume fraction of oil on gear flanks.
- 3) Ramping the rotation rate has in the present analysis no influence on the oil fraction on gear flanks.

Outlook

- 1. Inclusion of oil temperature simulation
 - heat dissipation in the gear-box
 - heat conduction at the gear-box wall
 - heat conduction at the gear flanks.
- 2. Influence of oil viscosity on oil flow and volume fractions on gear flanks.
- 3. Influence of gear-box design and gear wheel geometry.

Thank you for attention!!

