Ingenieurgesellschaft mbH

CFD-Know-how seit 1990. Mit uns können Sie rechnen.

Software-Based Optimization of E-Machine Spray Cooling Systems

Dipl.-Ing. Ludwig Berger lb@cfd-schuck.de

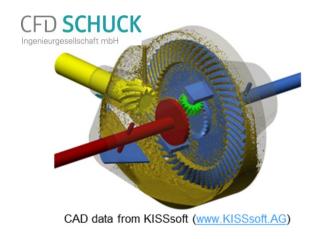
info@cfd-schuck.de www.cfd-schuck.de

Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

> Outline

- Motivation
- CFD for E-Machine Design Process
- New Optimization Method for Spray Cooling Systems
- Results
- Conclusion


Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

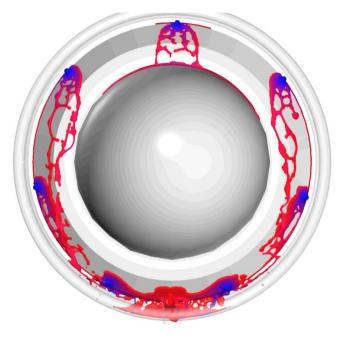
Company Profile

- Engineering services in Computational Fluid Dynamics
 - established in Heidenheim in 1990
 - 20 employees at 3 locations
- More than 25 years of simulation experience
 - 10 years of experience regarding cooling of electric machines
 - Use of all key commercial CFD software packages
- Core competences
 - support of product development via CFD simulation
 - development of tailor-made simulation methodologies
 - CFD-training and consultancy

Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

Motivation

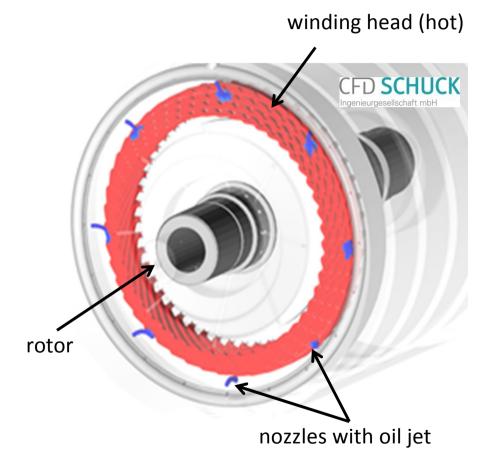

- Development of Electric Machines
 - trends towards reduced development time
 - increasing power to weight requirements
 - => importance of effective thermal management
 - => requirements of innovative cooling concepts
 - => use of simulation tools is recommended
- Application of Computational Fluid Dynamics (CFD)
 - well established in automotive industry
 - prediction of component or cooling liquid temperatures
 - development of heat balances

Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

CFD for E-Machine Design Process

- Application of CFD for E-Machine cooling
 - air cooling with fans
 - water jacket and shaft cooling
 - thermal management of entire E-machine
 - combination of different cooling methods
 - oil spray cooling

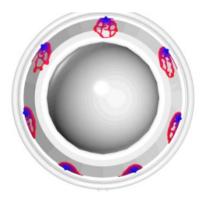


Ingenieurgesellschaft mbH

Optimization of E-Machine Spray Cooling Systems

Spray Cooling Systems

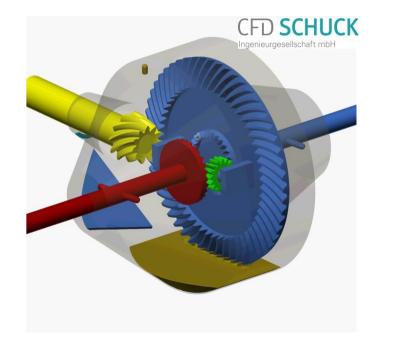
- Objectives of investigation
 - oil flow, surface wetting, contact time
 - heat transfer from winding head surface to oil
 - Process time (5-15sec)
- Parameters
 - nozzles:
 - diameter, angle of inclination
 - number, position, spatial distribution
 - operating conditions:
 - oil flow rate, initial oil temperature
 - winding head geometry and temperature
 - fluid rotation due to rotor

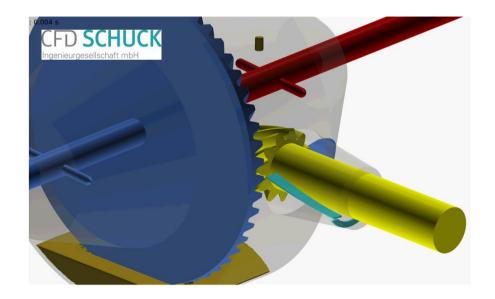

Ingenieurgesellschaft mbH

Optimization of E-Machine Spray Cooling Systems

CFD based design of Spray Cooling Systems

- Grid based CFD :
 - detailed physical models available => high accuracy
 - oil: flow, impingement, fluid film, oil-air interaction
 - local heat transfer coefficients, heat flux, heat conduction
 - time for a simulation: 1-2 weeks (HPC-Cluster)
- Smooth Particle Hydrodynamics (SPH-CFD)
 - a few physical models available => lower accuracy
 - oil: flow rate, impingement, wetting,
 - one-way air-oil coupling
 - total heat transfer from surface to particles
 - time for a simulation: few hours (workstations)
 => Requirement for early design phases



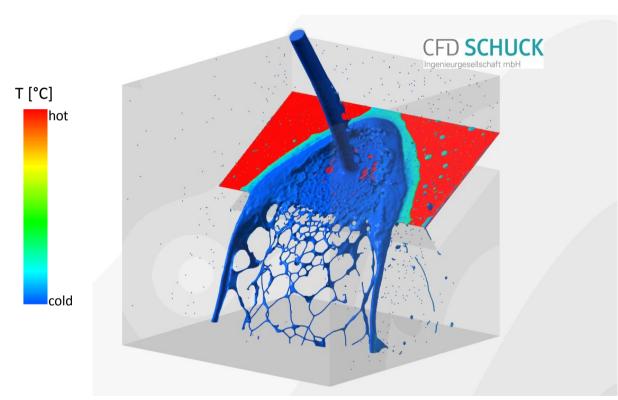


• GearBox-Optimization

Optimization of E-Machine Spray Cooling Systems

> Examples of SPH simulations

CAD data from KISSsoft (www.KISSsoft.AG)



Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

Examples of SPH simulations

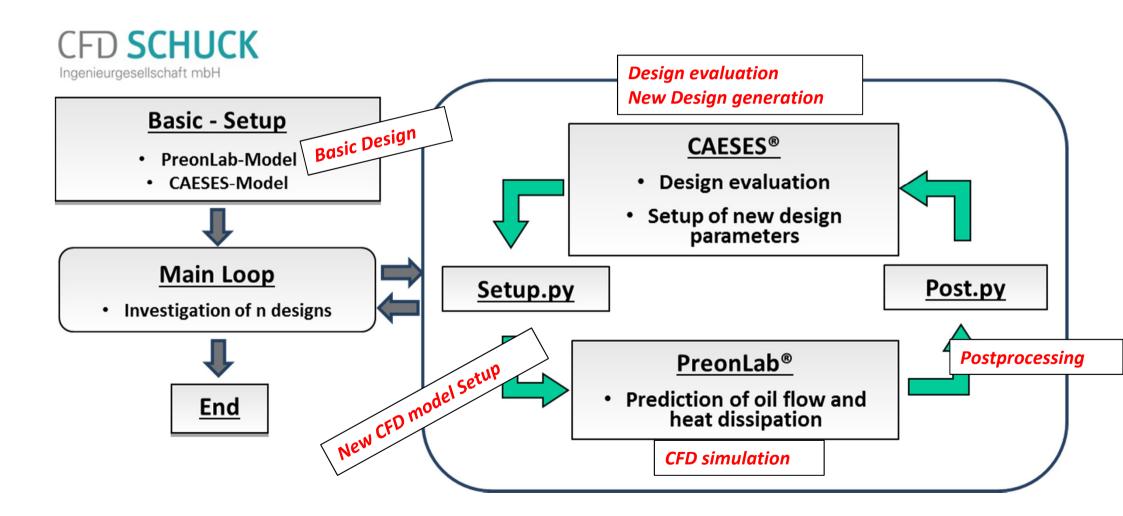
• Oil impact and flow on hot surfaces

Oil-Heating

Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

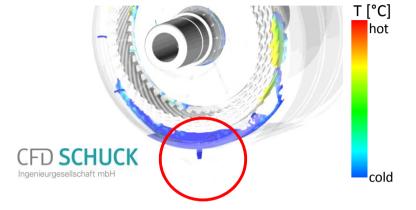
New Design methodology for spray cooling

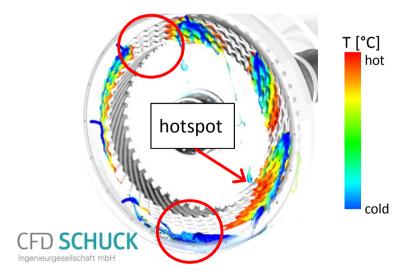

- Quick and reliable comparison of design concepts
- Optimization of designs
 - => minimum of total time for investigation
 - => fully automated workflow
 - parametric CAD and CFD models
 - software based optimization
- Software
 - SPH Solver: PreonLab (FIFTY2 Technology)
 - Optimization: CAESES (FRIENDSHIP SYSTEMS)
 - proprietary Python-based scripts

Ingenieurgesellschaft mbH

Optimization of E-Machine Spray Cooling Systems

Optimization Workflow

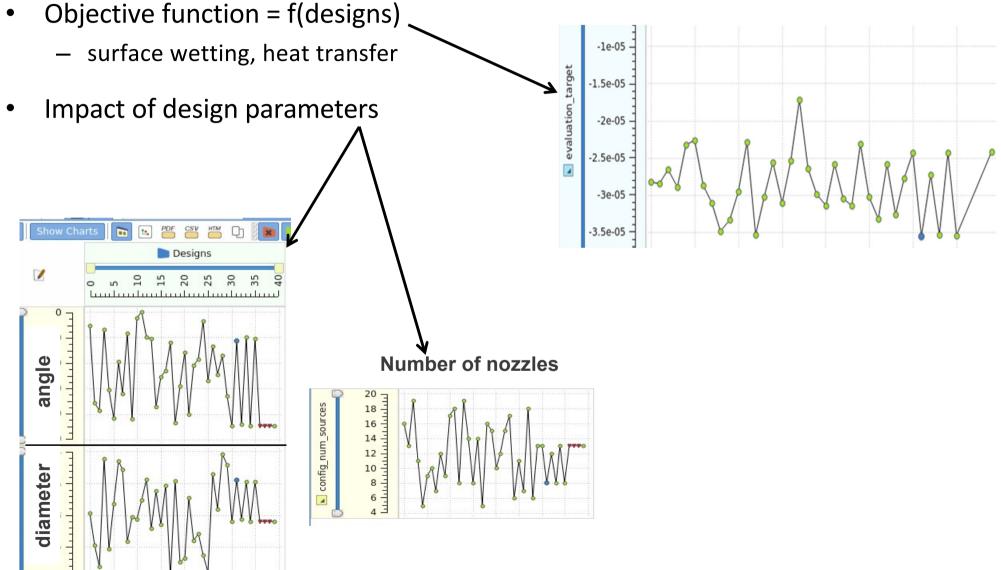

Optimization of E-Machine Spray Cooling Systems


Ingenieurgesellschaft mbH

CFD based design of Spray Cooling Systems

- Thermal SPH-simulation of winding head wetting
 - Fast investigation of geometry and loadcases
 - => Evaluation of system dimension
 - Oil damming
 - => increase of outlet dimensions

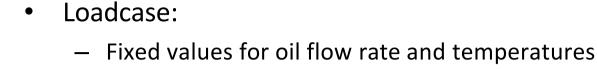
- Evaluation of winding head wetting
 - No oil impact from every nozzle
 - Insufficient wetting and oil flow
 - => variation of nozzle number and diameter


Designs 1 10 15 20 25 30 10

CFD SCHUCK

Ingenieurgesellschaft mbH

Optimization of E-Machine Spray Cooling Systems


Results: Evaluation of different designs

© CFD Schuck Ingenieurgesellschaft mbH 2019

0.002

automotive CAE Grand Challenge 2019, Hanau

• Objective function:

Ingenieurgesellschaft mbH

CFD SCHUCK

- heat transfer
- Design parameter:
 - diameter and number of nozzles,
 - angle of inclination
- 30 designs within appr. 60h
- Hardware:
 - Linux workstation, 24cores
 - Intel[®] Xeon[®] CPU
 - -X5650: 2.67MHz

Optimization of E-Machine Spray Cooling Systems

Results: System Optimization

Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

Conclusion

- A novel and fast design methodology for spray cooling systems was developed and successfully applied.
- The oil injection system and the oil cooling of a winding head could be quickly studied by a SPH-CFD approach. Parametric CAD and CFD models
 - allow the evaluation of geometry parameters and operating conditions
 - minimize the total time of simulation up to some hours per design
- A fully automated optimization workflow was established by combining the SPH-CFD solver with optimization software and proprietary Python subroutines.
 - Cooling of the winding head was optimized by adjusting geometry parameters of the spray cooling system with respect to the operating conditions
 - Optimized designs can be achieved within a few days

Optimization of E-Machine Spray Cooling Systems

Ingenieurgesellschaft mbH

Thank you for your attention

